The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  0  X X^2+2  X  0  X X^2+2  X  X  X  2  X X^2  X  X  X  X  2 X^2  1  1  1  1  1  1  1  1  1  X  X  X  X  1  1  1  1  1  1  1 X^2  0 X^2 X^2 X^2 X^2  X  0  2  X  2  2  X  X  X  X  X  X X^2  X  X
 0  X X^2+2 X^2+X  0 X^2+X X^2+2 X+2  2 X^2+X+2 X^2 X+2  2 X^2+X+2 X^2  X  0 X^2+X X^2+2 X+2  0 X^2+X X^2+2 X+2  2 X^2+X+2 X^2  X  2 X^2+X+2 X^2  X X^2+X  X X+2  X X^2+X  X X+2  X  0 X^2+2 X^2+X+2  X  X  X  2 X^2 X^2+X+2  X  X  X  0 X^2+2  2 X^2  0 X^2+2  2 X^2 X^2+X X^2  0  2 X^2+2 X+2 X^2+X X+2 X^2+X+2  X X^2+X+2  X X^2+2 X^2  0  2 X^2 X^2+2 X+2  X  X X+2 X^2 X^2  0  2 X^2+2 X^2  X  X  0 X^2+2 X^2+2
 0  0  2  2  2  0  0  2  2  2  0  0  0  0  2  2  0  0  2  2  2  2  0  0  2  2  0  0  0  0  2  2  0  2  2  0  2  0  0  2  2  2  2  0  0  2  2  2  0  2  2  0  0  0  0  0  2  2  2  2  0  0  0  0  0  2  2  0  2  0  0  2  2  2  2  2  2  0  0  2  0  2  0  2  2  2  2  2  2  0  0  0  2

generates a code of length 93 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 92.

Homogenous weight enumerator: w(x)=1x^0+146x^92+72x^94+19x^96+8x^98+10x^100

The gray image is a code over GF(2) with n=744, k=8 and d=368.
This code was found by Heurico 1.16 in 0.937 seconds.